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EXECUTIVE SUMMARY

Statistical procedures for detecting the CVPIA natural Chinook salmon production
doubling goal and determining sustainability of production increases

A mandate of Title 34 — Central Valley Project Improvement Act (of Public Law 102-575),
CVPIA, is to “develop within three years of enactment and implement a program which makes all
reasonable efforts to ensure that, by the year 2002, natural production of anadromous fish in Central
Valley rivers and streams will be sustainable, on a long term basis, at levels not less than twice
the average levels attained during the period of 1967-1991”. In this report we develop statistical
procedures aimed at comparing natural production levels in the 1967-1991 period and in years since
then and we present ideas for methods to determine the sustainability of natural production levels

observed during a given period.

1. Assessing doubling versus assessing sustainability. The problem of determining whether
a doubling of natural production has occurred is primarily a problem of statistically estimating
natural production for a given stream and a particular time period. The problem of assessing
sustainability is more difficult in that it includes both estimating natural production and also
determining the reasons for particular observed levels of production. Solutions to this latter
problem involve modeling changes in underlying life history parameters, especially expected
juvenile survival rates, while statistically controlling for both demographic and environmental

variation.

2. Complications to assessing doubling. Statistical procedures which aim to compare the
natural production levels of anadromous fish in Central Valley rivers and streams in the
period 1967-1991 with later periods are complicated by two factors which make standard
approaches, e.g. two sample t-tests, inadequate. One factor is measurement error, which
includes variance and bias, in natural production estimates. The second factor is temporal
dependence in natural production levels between adjacent years, where the dependency is due
to the fact that progeny of the same cohort contribute to the natural production in multiple

years.

3. Recommended statistical alternative to assessing doubling. Standard statistical pro-
cedures for comparing two groups, such as two-sample t-tests, or for detecting a trend, such
as ordinary linear regressions of production on time, are inadequate when data contain both
measurement errors and temporal dependency. Rather than attempt somewhat ad hoc modifi-
cations of such standard procedures to account for such errors and dependency, we recommend
that a general class of more sophisticated statistical procedures, known as state-space mod-
els, be used to assess doubling. State-space models are models for two time series running
in parallel, where one time series reflects the true state of nature, in the present case the
actual natural production levels distinguished by age-class, sex, etc., and the second time
series consists of error-contaminated and temporally correlated estimates of the first series.

4. Concerns regarding available data. While we believe that state-space models are the
proper statistical tool for comparing natural production levels in different periods, we have
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concerns over the quality of estimates of natural production in both the 1967-1991 period and
in years since then. In particular estimates of the proportion of total production attributable
to hatchery fish depend upon problematic assumptions and estimates of the imprecision and
bias of the estimates are lacking. For state-space models, or even modified t-test or ¢-based
confidence intervals, to be successfully implemented, measures of the bias and imprecision
of natural production estimates are needed. For the point estimates of natural production
during the historical period of 1967-1991, statistical measures of accuracy and precision need
to be calculated. With future analyses in mind, we emphasize the need for immediate im-
plementation of statistically sound tagging, marking, and sampling schemes with associated
procedures for separately estimating hatchery and natural production on a stream by stream
basis. This involves at a minimum the tagging of several well-chosen hatchery releases meant
to serve as surrogates for the various Central Valley natural stocks that cannot themselves
be tagged in adequate numbers.

5. Recommended statistical measure for assessing sustainability. Determining whether
a given level of natural production observed during a particular period is sustainable involves
more than a state-space model framework. The essential issue is whether there have been
positive changes in anadromous fishes’ life history parameters that are likely to be ongoing
rather than temporary. We formulate a measure of average natural production which is
based on recruitment parameters and is independent of environmental variation. Determining
whether changes in this average natural production measure are due to ecosystem restoration
efforts may require the inclusion of control sites with measurements made in the 1967-1991
period and in a later period, or, at least, the inclusion of covariates in the state-space model
structure that aim to control for random environmental effects.

6. Future work. To successfully apply state-space models to the twin problems of assessing
doubling and assessing sustainability, work is required on three fronts.

(a) Calculation of error bounds for production estimates. The magnitude of errors
of existing estimates of natural production during the baseline period and since 1992 may
be very large. Any analysis methods seeking to compare natural production estimates
between the baseline and later periods, including state-space models, must somehow
account for such possibly large errors. We suspect that careful data analyses might allow
one to develop some decent notions of the kinds of errors that may exist in tabulated
estimates of natural production, but we believe substantial effort will be required to
generate such notions.

(b) Future data generation. A coordinated marking, tagging, sampling, and tag recov-
ery program based on hatchery Chinook salmon reared in the Sacramento-San Joaquin
needs to be implemented with the aim of using hatchery fish as surrogates for naturally
produced fish. At the same time, we are wary of automatically assuming that a hatchery
fish is a suitable surrogate for a wild fish and also recommend that marking and tagging
of naturally produced juvenile fish, to the degree possible, be done to determine the
degree of similarity between designated surrogate hatchery fish and naturally produced
fish.
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Sampling of ocean catches must of course continue, but in addition sampling of freshwater
catches (e.g., creel surveys) needs to be reinstated. System-wide coordinated sampling of
and estimation of escapement is needed for all the watersheds in the system, and standard
errors for the escapement estimates need to be reported. Aging and sexing of at least
subsamples of escapement data should be done, too, and the resulting information would
be used for separating hatchery fish from wild fish and estimation of natural production,
for determining sustainability, and to account for between year dependence of production
estimates.

Relatively small-scale and localized experiments that aim to quantify the impact of
ecosystem restoration efforts are worth considering, and, if deemed feasible, imple-
mented. Such experiments could involve comparing and tracking life history processes
and duration between modified and unmodified portions of habitat.

State-space model formulation, development, and application. A substantial
research effort would be required to develop state-space models that could be used to
assess doubling and also assess sustainability. Many of the basic ideas of the formulation
have been developed in the report but alternative formulations for various components
of the life history process need to be considered. Additionally the inclusion in the state-
space model of either control sites, as in a BACI (Before-After Control-Impact) design,
or covariates that reflect freshwater and marine survival conditions, requires considerable
thought. Finally, computer programs need to be written to implement the state-space
model and allow application of the model to real data sets.



Statistical procedures for detecting the CVPIA natural Chinook salmon
production doubling goal and determining sustainability of production
increases

1 Introduction

One of the mandates of Title 34 — Central Valley Project Improvement Act (of Public Law 102-
575), CVPIA, is to “develop within three years of enactment and implement a program which
makes all reasonable efforts to ensure that, by the year 2002, natural production of anadromous
fish in Central Valley rivers and streams will be sustainable, on a long term basis, at levels not less
than twice the average levels attained during the period of 1967-1991”. The phrase “not less than
twice the average levels” is referred to herein as the doubling goal. Subsequent to the passage of the
act, the US Fish and Wildlife Service (USFWS) formed a workgroup which produced a document,
“Final Restoration Plan for the Anadromous Fish Restoration Program” (USFWS, 2001), which
includes an appendix titled “AFRP Position Paper”. The position paper discusses some of the
key terms in the mandate and here we summarize just two terms that are pertinent to our report:
natural production and sustainability.

Natural production is defined on an annual basis for a given naturally produced stock and it
is the total catch and escapement within a specified year-long period. Total escapement includes
both in-river and hatchery escapement. Assuming that fisheries take place beginning as early as
April in a given year and proceed through the spawning season, which may continue as late as
February of the following year, the total natural production for a given population is equal to the
sum of the ocean and freshwater catches and freshwater spawning escapement that are attributed
to natural spawning of that population in previous years. By this definition, returning adults that
were survivors of fish released from hatcheries are not included in natural production, but returning
adults that are survivors of fish produced via natural spawning, irrespective of the origin of adult
parents, are included in natural production. Let Ps,; denote the natural production for fish that
were born in stream s of race r during “year” t. Then Ps,; is calculated by

Psrt = Z COC,srta + Z CFVV,srta + Z ESCN,srta + Z ESCH,srtaa (1)
a a a a

where Coc and C'pyy are ocean and freshwater catches, E'scy is escapement that spawned naturally,
and FEscy is escapement (of naturally produced fish) that strayed to hatcheries, with summation
over all relevant age classes (denoted by a). Each of the above components can be further partitioned
spatially, and, in the case of catch, by gear type (or commercial versus sport designation). For
brevity when production is referred to in the remainder of this report it will designate the natural
production for a particular stream, and is distinct from a stream’s hatchery production (if it
has a hatchery) and from a stream’s total production, which is the sum of natural and hatchery
production.

The problem of separating the contribution of hatchery fish to catch or escapement from the
contribution from natural fish is a distinct statistical estimation problem that we do not address in
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this report. Newman, Hicks, and Hankin (2004) do however present different statistical procedures
for making such distinct estimates, all of which rely upon the use of tagged hatchery releases meant
to serve as surrogates for designated naturally produced populations.

Regarding the second key term, sustainability, the “AFRP Position Paper” (USFWS, 2001)
states that production levels are “sustainable when they are maintained under the entire range of
conditions resulting from legal human activities, as superimposed on natural variability inherent in
the system”. Herein we use this description as the basis for statistical procedures to quantify the
sustainability of a particular production level. We note that our statistical procedures focus on long
run or expected production levels over a range of environmental conditions, such as marine survival
probabilities, that are in practice not deliberately manipulable by man. A non-habitat factor that
can affect production levels for chinook salmon population dynamics in particular (or any salmon
species with different maturation ages possible) is age-specific harvest rates. In Appendix A, we
present an example of the impact on production due to differences in harvest rates alone.

The purpose of this report is to present statistical procedures that could be used to determine
whether the mandate of Title 34 for salmon has been, or is being met. One set of procedures
is focused on detecting, or determining whether, a doubling of natural production has occurred.
These procedures can be roughly categorized as being either estimation or testing procedures.
The other set of procedures aims to determine whether or not sustainable increases in production
have occurred. These latter procedures can be approximately viewed as explanatory modeling
procedures. The nomenclature is not exact in that the estimation or testing procedures are based
on underlying statistical models, but such models may provide neither explanation nor insight into
why production might have changed nor may they indicate whether or not resulting production
levels are sustainable.

The structure of the remainder of the report is as follows. The next three sections (Sections 2, 3,
4) focus on answering the question: “Has doubling occurred?”. In Section 2 we present two idealized
situations for a change in current production levels relative to baseline production along with some
simple statistical procedures. The idealized situations is far from the real situation, however, and
this section is partially intended to be a warning against using simple standard statistical procedures
for determining if doubling has occurred. The next section, Section 3, departs from the idealized
situation in the direction of reality by focusing on the particular problems of measurement errors
in production estimates and environmental and demographic stochasticity, especially temporal
dependence. Then Section 4 presents a statistical framework, the state-space model, that could
serve as a statistical tool for modeling production in the presence of the above problems of errors
in production estimates and temporal dependence between annual production levels. Section 5
focuses on the question: “Assuming doubling has occurred, is it sustainable?”. Section 6 ends the
report with a discussion that includes concerns about estimates of production during the baseline
and later periods.

We note here that Chinook salmon are the anadromous species that we use for demonstration
and are the species that we have focused on in earlier work aimed at developing production esti-
mation procedures (Newman, Hicks, and Hankin, 2004). The other anadromous species identified
by Title 34 (steelhead, striped bass, sturgeon, and shad) are not addressed specifically but some
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of the statistical procedures proposed herein could be applied, perhaps with minor modification,
assuming the necessary data are gathered for those species.

2 Idealized scenarios and statistical procedures

In this section we present two idealized scenarios where more or less standard statistical procedures
could be used to determine if a doubling in production has occurred. We emphasize that these
scenarios do not reflect reality and we later point out where reality departs from these scenarios
and how standard statistical procedures are thus inappropriate.

We imagine two idealized scenarios for a doubling of production to occur following the baseline
period of 1967-1991. For both scenarios we assume perfect information, namely no measurement
or estimation error in the production values. Process variation, demographic and environmental
stochasticity, exists but is assumed constant. The two scenarios are plotted in Figure 1. In the
first case (Figure 1 a), labeled sudden increase, there is an immediate and exact doubling of the
mean production beginning in 1992. In the second case (Figure 1 b), labeled linear increase, there
is a steady upward linear trend in the mean production level such that average production in 2001
(ten years after the baseline period) exactly equals twice the baseline period average and then
the average production remains constant from then on. If in fact production should more than
double, the ability to determine whether production has at least doubled will increase; this point
is emphasized in the later section on a Bayesian solution.

The examples plotted in Figure 1 were based on the estimated baseline values for Deer Creek
fall-run Chinook salmon production. In the sudden increase case, the production values are assumed
normally distributed with means, up (B for before) and 4 (A for after), and a constant standard
deviation (in the figure, 02=400%); namely,

P Normal(pug, 0?) t=1967,...,1991
! Normal(pg = 2 * up,0?) t=1992,...

In the linear trend case,

Normal(ug, o?) t=1967,...,1991
P ~{ Normal (,UB + uB%,H) t=1992,...,2001
Normal(pa = 2 * upg, 0?) t=2002,...

The statistical procedures for determining whether or not a doubling has occurred, or in the
case of a linear trend, when it is likely to occur, involve inferences about the means.
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2.1 Inference for sudden increase

2.1.1 Hypothesis test

One approach is hypothesis testing, where the null hypothesis is that doubling has not been achieved
and the alternative is that average natural production has at least doubled.

Ho:pa < 2up =pa—2pp <0

Ho:pa = 2pp=pa—2pp 20
This formulation is awkward in that under H,, the set of possible values of u4 is infinite and
the most conservative value to choose for testing the pua4 is 2up-, where up- is infinitesimally

smaller than pp. The underlying t¢-statistic that would be appropriate is identical to that for a
mathematically less awkward formulation, namely,

Ho:pa < 2up
Hy:pa > 2up.
This formulation is troublesome, however, in that if u4=2up, i.e., an exact doubling has occurred,

then one would not want to reject H,. This is indicative of one of the limitations of “classical”
significance testing.

2.1.2 Lower confidence bound for pu4 — up

A less awkward solution is to construct a 1-a lower confidence bound (LCB) for pa — pp. If the
LCB is greater than or equal to pp, then that is evidence for a doubling of the average. The point
estimate of g4 — pp is P4 — Pp, the difference in average production levels in the before and after
time periods; i.e.,

1991

— 1
Pp = > PR
t=1967

| 19914na

Py = — > P
A Z902

The standard error of the difference,
- 52 §2
SE(P4-Pp) = ﬁ'f‘i

where SQB and 8?4 are the sample variances of production for the before and after periods and np
and n4 are the number of years of data for both periods. If one assumes that the variance is the
same for both time periods, then a pooled variance estimate would be calculated,

2 - (np —1)sh + (na —1)s%
ng+mng— 2

p
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and the standard error is,

The LCB, in this latter case, is
LCB(pa—pup) = Pa—Pp—ti—angin,—2SE(Pa— Pp)

It is likely that variances would change with changes in the mean production level, however, and
the degrees of freedom calculation is a little more complicated, and not worth going into here.

One can also use this formulation to examine the effect of sample size on the precision of the
inference. Assuming g4 = 2up, then the expected value of P4 — Ppg is up. Suppose one would
like the LCB for ua — pp to be within a specified level below pp, say kup where 0 < k < 1.
For example, suppose pup=800, thus ©4=1600, and k=0.9, i.e., one wants the LCB to be at or
above 0.9*800=720. The probability of this occurring can be calculated for various sample sizes
or number of years of data as follows. For simplicity standard normal quantiles, z,, are used to
approximate t-distribution quantiles (which would be a bit more accurate); relatedly the common
variance of production values, o2, is assumed known.

_ _ 1 1
Pr(LCB > kup) =~ Pr <PA—PB—ZQJU+ >ku3> (2)
na np

Using the fact that
— — 9 1 1
Pp—Pp ~ Normal | upg,0°( —+ — ,
na np

one can rearrange the terms in Eq (2) to get the result,

(1—Fk)ps
[ 1 1
g A + ng
where Z is standard normal. np can be viewed as fixed at 25 (years 1967 to 1991). A reasonable

a-level for the LCB is 0.05, thus z,=1.96. Suppose up=800, 0=200, and k=0.9. The probability
in Eq (2) for different values of n4, namely number of years after 1991 that are monitored, are

Pr|Z>z,—

shown in the table below.
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A Ze — y‘& Pr(LCB > 720)

Fathg

5 0.83 0.20
10 0.58 0.28
15 0.42 0.34
20 0.31 0.38
25 0.23 0.41
30 0.17 0.43
35 0.12 0.45
40 0.08 0.47
45 0.04 0.48
50 0.01 0.50
%) -0.36 0.64

Note that the probability that the LCB exceeds 720 is at most 64%, no matter how many years
of monitoring are carried out. The reason for this bound is the fixed number of years in the baseline
period, npg, that creates fixed uncertainty about pup and therefore about pua — up.

2.1.3 Bayesian solution

A Bayesian perspective is to view pu4 and pup as random variables in the sense that our knowledge
about them is uncertain (as opposed to p4 and pp truly varying, say from year to year). One way
of framing our inference objective now is to calculate a probability statement of the following form.

Pr(pa > 2up|Data),
equivalently
Pr(ua — 2up > 0|Data). (3)

Such inferences about parameters made conditional on the data are called inferences from the
posterior distribution for the parameters. The determination of a posterior distribution requires
specification of a prior distribution for the parameters and a likelihood or probability model that
links the data to the parameters. Bayes theorem then can be used to calculate the posterior
distribution. In general if  is a parameter, the posterior distribution for 6 is
Pr(0, Data)  Pr(Datalf) Pr(0)

Pr(Data) Pr(Data)
Pr(Datal|0) Pr(0)

[ Pr(9, Data)dd

Pr(Datal|0) Pr(0)
| Pr(Datald) Pr(6)do

Pr(6|Data)




CVPIA Doubling Goal 11

where Pr() is the prior distribution. Note that the denominator Pr(Data) can be evaluated by
averaging the probability of the data and 6, combined, over all possible values of 6. In short,
Bayesian inference uses data to update or modify a prior distribution, thus yielding a posterior
distribution.

In many cases to calculate the posterior distribution requires numerical computation methods,
often computer intensive Monte Carlo procedures. To demonstrate how the method would work
here, however, a simplifying choice of prior distributions is made, namely, that the priors for s
and pp are independent normal random variables with the same mean p and same variance 2.
This implies that before viewing data we do not believe there has been any change in production
levels from the baseline period. v? should be chosen to be relatively wide to reflect our uncertainty
about the two means. We further assume (as for the LCB calculations above) that the production
values (Data) are independent normal random variables given the parameters, ps and pp, and
the variance is the same (02). After some algebra, one can show that the resulting posterior

distributions for u4 and pp are independent normal distributions:

|Dat Normal o’ L - o’ (4)
ata ~ Norma
e 02—1—ansz o2 +ngy2 7 o2/y2 fnp
2 2 2
o nay: — o
Data ~ N 1 Py, 5
palData orma <02—|—nA72M+02+nA72 A 02/72+n,4> 5)
The Bayes solution to the probability in Eq (3) can be found by evaluating the following integral.
o0 o0
Pitua 2 > 00ata) = [~ | [* flualData)dua | fusiDatardun, )
—oo LJ/2up

where f(ua|Data) and f(up|Data) are the posterior (normal) density functions (Equations (4) and
(5))-

As a demonstration, the before (np=25) and after (n4=30) production values were simulated.

P Normal(ppg = 765,02 = 200?) t=1967,...,1991
! Normal(psg = 2 % up,0? = 200%) t=1992,...

The priors for up and pg were independent Normal(u=600,7=400). The resulting production
means were Pp=748 and P 4=1473. The posterior distributions,

/,LB|P1967, ceey P1991 ~ Normal(746, 362)
pa|Prog2, - .., Pag21 ~ Normal(1465, 36%).

The probability that p4 is at least double up was estimated by Monte Carlo integration:
Pr(ua >2up) ~ 0.37.

Note that p4 is exactly 2up in this case, but there is enough uncertainty about up in particular
that even increasing n 4 to 3000 years only increases this probability to around 72% (the argument is
similar to issue of limits on a LCB’s precision). If in fact pg were 2.2up, then Pr(ua > 2up) (given
np=30 years) increases to 94%. It is simply more difficult to establish that natural production has
doubled if it has increased by a factor of 2.0 as compared to a factor of, say, 3.0 (i.e., “much more
than doubled”).
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2.2 Inference for linear increase, a trend

We just consider one parametric formulation to the issue of trend in this idealized setting. The
focus is on estimating trend and predicting when a doubling might be achieved; this is in contrast
to testing for trend. The underlying model for production is assumed to be:

Normal(up, o) t =1967,...,1991
P, ~ ¢ Normal(pup + (t —1991),0) t=1992,...,T
Normal(pug =2 upg, o) t>T,...

The year T' is unknown and the methodology below assumes that 1991+n 4 is some point in time
before T. One could develop a more general methodology to deal with the case ng > T and
determining this change point is an additional inference problem.

Given n4 years of production values, the slope, 3, is estimated by ordinary least squares.

19924n4—1 o B
(P — P)(t—1)
§ o= =%
19924na—1
> (=12
t=1992

To predict when E[P;] > 2up, solve for T in the equation,

v

21p g + B(T — 1991)
=
T < pp/B+1991

Thus if pp=700 and =100, then 7' < 741991 = 1998 (in this case T=1998 is the year doubling is
achieved). Given an estimate of pup (the intercept in the linear model), the predicted value for T

T = |up/B+1991]

where the notation [x] means to take the next largest integer for z if = is not an integer. For
example, if 2=2.3, [x]=3. Confidence intervals for T could be calculated, too.

Nonparametric curves could be fit as well. Additional refinements would be nonparametric
functions restricted to be monotonically increasing functions (e.g., isotonic regression).

3 Complications

The methods developed in the previous section are not appropriate in reality because of at least
two complications that are departures from the idealized situation. These two complications are

measurement errors and temporal dependence.
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3.1 Measurement error

Production for a given year and stock must be estimated, and estimated production differs from
true production by measurement or observation error. This error has two components, bias and
variance. For a given year, the estimate of production can be decomposed into three components,

pt = Pt+bt+6t, (7)

where P; is the true production, b; is bias or systematic error in one direction, and ¢; is random
error. ¢ is on average 0 and has some variance, denoted 77.

3.1.1 Bias

Ideally b,=0, i.e., the estimates are unbiased and the average of multiple estimates of P, would
be quite close to P;. If bias does exist and if the bias was constant from year to year, i.e., by=>b
a constant, then some of the above procedures could still apply when inference centers on the
difference, u4 — up. For example,

E[Pa—Pp] =[ua+b] —[up+0] = pa—pp

3.1.2 Random error

Similar to bias, it would be simplest if 72 were constant for all years. It is likely not constant,
however, but so long as estimates of 77 were available, relatively accurate inferential statements
about pua — pp are still possible.

3.1.3 Estimation of P,

Estimation of P; for a wild Chinook salmon stock is complicated and involves estimation of various
components of catch (ocean and freshwater) and escapement. For the purposes of Title 34 there
are two sets of production estimates to consider, the baseline period estimates and estimates made
afterwards. Both sets of estimates will have bias and random error. We have concerns about baseline
period estimates and make recommendations about procedures for making future estimates (see
Section 6).

3.2 Dependence in FP;s

The second complication is that annual production levels, P;, are not independent between years.
One source of between year dependence arises from the fact that a single cohort contributes to the
production for multiple years. If, for example, the age 2 survival is very high for a cohort from
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brood year ¢, then that cohort will contribute larger than average numbers of fish to the age 2
component of P;,9, to the age 3 component of P;y3, and so on. Underlying this dependence is both
demographic stochasticity (e.g., number of fry produced will vary between occasions with identical
escapement and environmental conditions) and environmental stochasticity (e.g., river flows vary
between years during juvenile residence).

To demonstrate the possible degree of between year dependency, simulations of abundances were
made using a life history model for Sacramento winter-run Chinook salmon (Newman and Lindley
in prep). Winter-run Chinook salmon return mostly at ages 2, 3, or 4. The simulation model
generates outmigrating juveniles from a stochastic Beverton-Holt recruitment function. It also
generates sex-specific age 2 ocean residing fish (non-maturing) and age 2 spawners using multinomial
distributions (with parameters being survival rates and maturation rates). Multinomials are also
used to generate age 3 and age 4 fish (sex-specific, immature and mature, where all age 4 fish
are mature). The stochastic Beverton-Holt model and the multinomials generate demographic
variation, and environmental variation is simulated by allowing the age 2 survival rate (survival
from outmigrating juvenile phase to age 2 ocean phase) to vary at random. There is no harvest in
the simulation.

Figure 2 shows a time series plot of the simulated production for a 60 year period along with an
autocorrelation plot with lags up to 19 years. The autocorrelations are quite high for lags of one
and two years, and are statistically significant (>0) for up to 4 years. In the presence of harvest, if
the harvest varies much between years, the degree of between year dependence will likely lessen. In
any case, testing or estimation procedures that ignore between year dependence will be potentially
misleading.

3.3 Modifications to procedures for idealized situation

In the remainder of this section, we examine two modifications to some of the analysis procedures
described in Section 2 and we focus just on the problem of measurement error. Modifications
to procedures in Section 2 to reflect dependency alone can be made, for example, using an AR-4
model, (autoregressive model of order 4), but we defer treatment of dependency to Section 4. State-
space models are a unified approach for handling measurement errors and interannual dependence
simultaneously and details are given in Section 4.

3.3.1 Sudden change and measurement errors

The following model is assumed for production estimates.
Pt|Pt ~ Normal(Pt,TtQ), t=1,...,ng,ng+1,...,ng+ny

Thus conditional on the true production, the estimate is unbiased and has a variance that can vary
from year to year. It can be shown that the probability distribution for P, unconditional on P, is



CVPIA Doubling Goal 15

also normal and is the following.

B o~ Normal(,uBt,UQ—f—th),t:1,...,nB
]5,5 ~ Normal(,uAt,J2—i—Tt2),t:nB+1,...,nB—|—nA

Assuming that the variances in the estimates, 72, are known (or, more realistically variance
estimates are available and then treated as equal to 77), the three parameters, ug, 4, and o2, can
be estimated by maximum likelihood. The estimates are found iteratively (i.e., there is no closed
form analytic solution) using a technique called Fisher scoring. The estimates at the k+1 iteration
are found by the following formula.

Ztl

1 Z"B+"A

Pt HB
202k

Py —pk

t=npg+1 724 52(k)
k+1 k np 1 B Ti+o
12523 “B Zt:1 T?+g2(k)] 0 0

—1
k+1 — k np+na
Ha - pa |+ 0 [ZtBnBH 2+a2<k)] 0

o 2(k+1) o2(k) 0 0 [ nptna T2+;2(k)}
t

A LCB for pg-pup can again be constructed and is equal to:

-1
_|_

np+na

—
T —'—() ()

t=np+1

fia— i — 7 [z S

The estimated variances of fi4 and i are taken from the first two elements on the diagonal of the 3
by 3 matrix in the above iterative estimation procedure (the matrix is called the Fisher Information
matrix).

3.3.2 Linear increase and measurement errors

Estimation of the slope parameter proceeds in similar fashion to the estimation in the sudden
increase case. The unconditional distributions for P, have variances increased by measurement
erTors.
Normal (pp,0? + 77) ,t = 1967,...,1991
P, ~ < Normal (up + B(t — 1991),02 + 72) ,t = 1992,...,T
Normal (,uA :2*,uB,02—|—TtQ) A>T ...

Maximum likelihood estimates for pp, 3, and o2 can again be found using an iterative procedure
such as Fisher scoring.

_ nB+nA 1
-1 0. 52 21 o2(F)

+05Z"B (Pr—uhy)?

2 +02(k)

+0.5 Z"B‘H’LA (Pt*MIZ)Q

t=np+1 Tt2+02(k) ]
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Given estimates of up and (3, T can be predicted as before,

T = [ap/B+1991],
but now the variance estimate for 7' needs to be inflated somewhat, compared to that in Section
2.2, to reflect measurement error.

4  State-space models for production and estimates of production

A single coherent framework that can account for error in production estimates and reflect interan-
nual dependence in underlying true production levels is a state-space model (SSM). A SSM also has
the ability to efficiently incorporate data generated from multiple sources for multiple components
of production, e.g., juvenile abundances, catch, and escapement data. Additionally, depending
upon the formulation of an SSM and available data, the resulting model can describe, and possibly
explain, why production levels are what they are.

A SSM is a model for 2 time series, one called the state process (labeled n;) and the other called
the observation process (labeled y;). A general formulation is the following.

Initial state ng ~ G(6)
State process ny ~ G(ny_1,0),t=1,...,T
Observation process y; ~ F(ng0),t=1,...,T

where G and F' denote particular probability distributions, e.g., normal or binomial, and 6 rep-
resents unknown parameters, e.g., measurement error and process error variances. Note that the
model for the state process suggests that n; only depends upon the immediate past n;_1; this is
called a first order Markov process. The dependence can extend further in the past, but the model
is technically no longer called a state-space model. We could use the term hidden process model
for the more general case but will for simplicity stick with SSM even when dependence extends
further in the past. Buckland et al. (2004) give several example formulations of SSMs for animal
population dynamics.

The inference objectives for SSMs are usually twofold: (1) to estimate the unknown parameters;
(2) to estimate the unknown state values. To make such inferences, Monte Carlo procedures,
including Markov chain Monte Carlo (Gilks, Richardson, and Spiegelhalter, 1996) and sequential
importance sampling (Doucet, de Freitas, and Gordan, 2001), are typically used.

For the particular problem of detecting changes in average production, we consider two different
SSM formulations. The first model is simpler and less explanatory than the second.

4.1 Simple SSM

This model focuses on total production rather than the components of production, catch and
escapement. The between year dependence in production levels is treated somewhat as a blackbox
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and observations are estimates of total production (along with estimates of variance). For example,
in the case of sudden increase,

Initial state Py ~ Normal(ug,o?)
State process P, ~ Normal th 1,0 ) t=1,...,np

(

(
P, ~ Normal(uyz, )t—nB—l—l
P, ~ Normal(pP;_1,0%),t=ng+2,...,np+ny
(

Observation process y; ~ Normal(F, ) =1,...,ng+ny

The parameter p reflects the between year dependence in production levels, and the parameters o2

and 72 are the state process variation and observation error, respectively. The observation process
could be lognormal instead of normal to ensure estimates are non-negative.

The state process is an example of a first order autoregressive model, where production in year
t just depends upon the previous year’s production. The model could be extended to second order
as follows.

Initial states P, ~ Normal(up,o?),t=—1,0
State process P, ~ Normal(p1Pi_1 + paPi_2,0 ),t =1,...,np

(

(
P, ~ Normal(pug,0?),t=np+1
P, ~ Normal(p1P_1,0 )t—nB—|—2
(

P, ~ Normal(p1P,—1 + p2Pi2,0%),t =np+3,...,n5 +na

In the case of linear trend, with first order autocorrelation say, the state process model would
include time and the previous production level.

Initial state Py ~ Normal(ug,o?)
State process P~ Normal(th_l,az),t =1,....,np
P~ Normal(,uB—}—ﬁ(t—1991)—|—th,1,02),75:n3+1,...,

4.2 Production component SSM

In this SSM formulation individual components of production are separately modeled in the state
process and the observations consist of estimates for each component and associated variances. The
state and observation at time ¢ are thus vectors of components. To reduce the number of equations
slightly in the formulation below we assume that all age 4 fish mature; extending the model to
allow age 5 fish is not difficult. Further, a distinction between freshwater and marine harvest is not
made; again, a more complex model can be formulated to allow this. Observations are estimates
of the components of production (and possibly abundances for other life history stages, especially
juveniles). Thus the method of production estimation of Newman, Hicks, and Hankin (2004), for
example, could be providing the estimates. As will be mentioned in Section 6, a considerably more
complex SSM would include production estimation as part of the model, i.e., raw sample data
rather than production estimates would serve as inputs or part of the observation vector.
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In this demonstration we assume the state process distributions are trinomial (Trin) for the
catches and escapements and a rounded lognormal distribution for juveniles based on an underlying
Beverton-Holt recruitment function. Alternate recruitment functions are easily substituted.

Soq344i—100 9
J: ~ [Lognormal <log <—’ ,log(C'V; +1
‘ : ] 1+ 6(S2+3+4,t-1) (CVen )

(Ca¢, Eat)  ~  Trin(Ji—1, ¢2ha, ¢p2(1 — ha)p2)
(Cst,Esy) ~ Trin <Jt—2 oot — Fagn, ¢2(1 — hi)(l - pz)¢3h37 ¢2(1 — h2)(1 — p2)gs(1l — h3)ﬂ3>
— 2 1 =1
2 = ¢2ha + ¢2(1 — h2)p2,
(Cat, Ear) ~ Trin <Jt_3 —Cot—2—FE3t-2—C3¢-1—FE3:1, $2(1~ h2){1 _1 623523(1 ~ hs)bahs ) $2(1 ~ ha)(1 = pi)jbi/(; —ha)éa(l - h3)>

Y3 = ¢2ha + ¢2(1 — h2)p2 + ¢2(1 — h2)(1 — p2)pshs + ¢2(1 — h2)(1 — p2)¢3(1 — h3)ps

The observation vector would consist of estimates of age 2, 3, and 4 catches and escapements, and
potentially estimates of outmigrating juveniles. Normal or lognormal distributions could be used.

Changes in production would be reflected in the state process and there are several ways to do
this. If juvenile estimates are available, then increases in production could be modeled by increases
in the o parameter of the Beverton-Holt model (partially reflecting increases in in-river juvenile
survival rates) and/or by decreases in the [ parameter (reflecting reduced density dependent mor-
tality or increased habitat availability). With the sudden increase scenario, the a parameter could
increase at the change point to some arbitrary amount; similarly 5 could decrease. With the linear
trend model, the o parameter would be modeled as a function of time, just as production itself
was in earlier examples. If juvenile estimates are not available, then increases in o and age 2 sur-
vival rates ¢o are confounded, thus increases in production could be due to better in-river juvenile
survival rates or better marine conditions. Models which allow for dynamic juvenile production
parameters are discussed in the next section.

5 Sustainability of production

A review of scientific and statistical literature revealed that the situation created by Title 34, namely
one of an ecosystem being in one state prior to some point in time (prior to 1992) and then changing
to another state at some later point, is similar to other situations that have been extensively dealt
with The literature has been largely motivated by the need for environmental impact statements
(both for planned development and for after-the-fact assessment of environmental disasters, such
as the Exxon Valdez oilspill) and ecosystem restoration projects. For general approaches see Smith
(2002a, 2002b), Stewart-Oaten et al. (1986), and Underwood (1994); for related fisheries examples
see Crawford (2003, 2004) .

The literature makes a distinction between two aspects of an assessment of a potential change in
an ecosystem. One aspect is simply to determine if a change did occur, in terms of the abundance of
one or more species, for example, and to estimate the effect size. The second aspect is to determine
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whether there have been positive changes in various life history parameters, say, that are likely to
be ongoing rather than temporary. The previous three sections of this report have been devoted
to the first aspect, determining if the production level has at least doubled and/or estimating the
magnitude of the change in production between two time periods. Determining whether a new
production level is sustainable is closely related to the second aspect of assessment discussed in the
literature and is the focus of this section.

Implicit to a statement that a new production level is sustainable is the notion that the expected
or average production that underlies year-to-year environmental and demographic stochasticity is
at a new level. In statistical terms, there have been fundamental changes in life history parameter
values central to a stochastic model. Simple comparisons of observed (or estimated) mean produc-
tion levels between two time periods do not pro